Microchip MCP73830 Manual


Læs gratis den danske manual til Microchip MCP73830 (8 sider) i kategorien Ikke kategoriseret. Denne vejledning er vurderet som hjælpsom af 16 personer og har en gennemsnitlig bedømmelse på 4.6 stjerner ud af 8.5 anmeldelser. Har du et spørgsmål om Microchip MCP73830, eller vil du spørge andre brugere om produktet?

Side 1/8
2022
Microchip Technology Inc. and its subsidiaries
DS90003289B-page 1
TB3289
INTRODUCTION
This document describes a Total System Solution
(TSS) for a single-cell Li-Ion/Li-Polymer battery
charger, consisting of a MCP16311/2 synchronous
buck switching regulator, a MCP73830 1A dedicated
battery charger and an external voltage drop
compensation circuit.
The proposed application circuit offers an effective
solution for the fast charging process of Li-Ion/Li-
Polymer batteries from a wide input voltage range of 5V
to 30V.
LI-ION BATTERIES
When choosing the battery for a specific application,
there are several technical aspects that should be
considered:
Rechargeable Battery vs. Primary
Rated Capacity vs. Useful Capacity
Internal Resistance and Pulse Capability
Temperature Effects and Storage
Safety and Transportation
The drawbacks of using a poor solution are:
Reduced Runtime and Low Efficiency
Uncertain Reliability and Leakage
Li-Ion batteries have gained popularity and are highly
utilized due to their advantages compared to other
chemistries, as follows:
High-Energy Density
Low Self-Discharge Current
Low Maintenance Required
High-Power Density
High-Discharge Current Rate
High-Charging Current Rate
On the other hand, as previously mentioned, there are
also a few downsides related to:
• Aging
Need for Protection Circuitry to Maintain Voltage
and Current within Safe Limits
Manufacturing Costs
Transportation Conditions
As a general trend, rechargeable batteries are often
used due to their cost effectiveness over their useful life
span. A typical charging profile for Li-Ion batteries is
depicted in Figure 1.
FIGURE 1: Typical Charging Profile
(Li-Ion Battery).
DESIGN CONSIDERATIONS
Input Voltage Range
MCP73830 is a dedicated single cell charger for Li-Ion/
Li-Polymer batteries with a 6V maximum input voltage
range. In order to extend this range up to 30V, the
MCP16311/2 synchronous Buck converter was
connected in series with the battery charger. Figure 2
reveals the block diagram, which also includes the
external compensation block; the proposed application
circuit is detailed in Figure 3.
Charge Qualification for MCP73830
When power is applied, the input supply must rise
150 mV above the battery voltage, before the
MCP73830 device becomes operational. The
automatic power-down circuit sets the device in
Shutdown mode if the input supply falls within +50 mV
of the battery voltage; the automatic circuit is always
active. Whenever the input supply is within +50 mV of
the voltage at the VBAT pin, the MCP73830 is set into
Shutdown mode. For a charge cycle to begin, the
automatic power-down exit conditions must be met
(VDD 3.6V and VDD VBAT + 150 mV) and the
charge enable input signal level must be above the
input high threshold. In addition to this, the battery
voltage should be less than 96.5% of V
REG. VREG is
factory set to a typical value of 4.2V.
Author: Andreea Macalau
Microchip Technology Inc.
MCP16311/2 and MCP73830 Single-Cell Battery Charger


Produkt Specifikationer

Mærke: Microchip
Kategori: Ikke kategoriseret
Model: MCP73830

Har du brug for hjælp?

Hvis du har brug for hjælp til Microchip MCP73830 stil et spørgsmål nedenfor, og andre brugere vil svare dig




Ikke kategoriseret Microchip Manualer

Microchip

Microchip M2GL060 Manual

2 December 2025
Microchip

Microchip RTPF500TS Manual

2 December 2025
Microchip

Microchip M1A3P600L Manual

1 December 2025
Microchip

Microchip M2S090TS Manual

1 December 2025
Microchip

Microchip M1A3P1000L Manual

1 December 2025
Microchip

Microchip M2S090 Manual

30 November 2025
Microchip

Microchip A3PE3000L Manual

30 November 2025
Microchip

Microchip HC12-100S0s Manual

30 November 2025
Microchip

Microchip M2GL010T Manual

29 November 2025
Microchip

Microchip M2GL150T Manual

29 November 2025

Ikke kategoriseret Manualer

Nyeste Ikke kategoriseret Manualer

Vaxcel

Vaxcel T0690 Manual

17 December 2025
Silverstone

Silverstone TS12 Manual

17 December 2025
TOTO

TOTO Silas TS210P Manual

17 December 2025
Wine-Mate

Wine-Mate WM-8500DS Manual

17 December 2025
Arçelik

Arçelik A75L 8870 5B Manual

17 December 2025
Dals

Dals RWS48-CC Manual

17 December 2025
Vinotemp

Vinotemp BR-30SSGG Manual

17 December 2025